

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	PyRF documentation

 [image: PyRF logo]

PyRF Documentation

Contents:

	Manual
	Installation

	API for WSA RF Receiver

	PyRF RTSA

	Reference
	pyrf.devices

	pyrf.sweep_device

	pyrf.capture_device

	pyrf.connectors

	pyrf.config

	pyrf.numpy_util

	pyrf.util

	pyrf.vrt

	Examples
	discovery.py / twisted_discovery.py

	show_i_q.py / twisted_show_i_q.py

	matplotlib_plot_sweep.py

	pyqtgraph_plot_block.py

	Changelog
	PyRF 2.7.2

	PyRF 2.7.1

	PyRF 2.7.0

	PyRF 2.6.2

	PyRF 2.6.1

	PyRF 2.6.0

	PyRF 2.5.0

	PyRF 2.4.1

	PyRF 2.4.0

	PyRF 2.3.0

	PyRF 2.2.0

	PyRF 2.1.0

	PyRF 2.0.3

	PyRF 2.0.2

	PyRF 2.0.1

	PyRF 2.0.0

	PyRF 1.2.0

	PyRF 1.1.0

	PyRF 1.0.0

	PyRF 0.4.0

	PyRF 0.3.0

	PyRF 0.2.5

	PyRF 0.2.4

	PyRF 0.2.3

	PyRF 0.2.2

	python-thinkrf 0.2.1

	python-thinkrf 0.2.0

	python-thinkrf 0.1.0

PyRF is an openly available, comprehensive development environment for wireless signal analysis. It enables rapid development of powerful applications that leverage the new generation of measurement-grade software-defined radio technology.

PyRF is built on the Python Programming Language and includes feature-rich libraries, example applications and source code, all specific to the requirements of signal analysis. PyRF is openly available, allowing commercialization of solutions through BSD open licensing and offering device independence via standard hardware APIs. PyRF handles the low-level details of real-time acquisition, signal processing and visualization, allowing you to concentrate on your analysis solutions.

[image: PyRF block diagram]

Hardware Support

This library currently supports development for the
ThinkRF WSA4000 and WSA5000 [http://www.thinkrf.com/] platforms.

Links

	Official github page [https://github.com/pyrf/pyrf]

	Documentation for this API [http://www.pyrf.org]

	WSA4000/WSA5000 Documentation [http://www.thinkrf.com/resources]

PyRF RTSA

[image: rtsa-gui screen shot]
[image: rtsa-gui screen shot]

Indices and tables

	Index

	Search Page

 Copyright 2012-2014, ThinkRF Corporation.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	PyRF documentation

Manual

[image: PyRF logo]

Installation

Windows Dependencies

	Download https://s3.amazonaws.com/ThinkRF/Support-Resources/pyrf-dependencies.zip

	Extract the contents of the zipped file

	Install Python 2.7.6 (python-2.7.6.msi)

	Add the following to the windows PATH ‘;C:Python27;C:Python27Scripts’

	Install Numpy (numpy-1.8.1-win32-superpack-python2.7)

	Install Scipy (scipy-0.14.0-win32-superpack-python2.7)

	Install Pyside (PySide-1.2.0.win32-py2.7)

	Install Pyqtgraph (pyqtgraph-0.9.8.win32)

	Install zope.interface (zope.interface-4.1.1.win32-py2.7)

	Install twisted (Twisted-14.0.0.win32-py2.7)

	Install pywin32 (pywin32-219.win32-py2.7)

	Install netifaces (netifaces-0.10.4.win32-py2.7)

	Using a command line, go to the qtreactor-qtreactor-pyrf-1.0 folder, and type ‘setup.py install’

	Using a command line, go to the setuptools-5.7 folder and type ‘setup.py install’

Continue from PyRF Installation below.

Debian/Ubuntu Dependencies

Use packaged requirements:

apt-get install python-pyside python-twisted python-numpy \
 python-zope.interface python-pip python-scipy python-setuptools \
 python-pyqtgraph python-netifaces
pip install -e git://github.com/pyrf/qtreactor.git#egg=qtreactor

Or install GUI requirements from source:

apt-get install qt-sdk python-dev cmake \
 libblas-dev libatlas-dev liblapack-dev gfortran
export BLAS=/usr/lib/libblas/libblas.so
export ATLAS=/usr/lib/atlas-base/libatlas.so
export LAPACK=/usr/lib/lapack/liblapack.so
pip install -r requirements.txt

Continue from PyRF Installation below.

PyRF Installation

Download the development version:

git clone git://github.com/pyrf/pyrf.git
cd pyrf
python setup.py install

Or download a stable release [https://github.com/pyrf/pyrf/releases], then
from the source directory:

python setup.py install

API for WSA RF Receiver

pyrf.devices.thinkrf.WSA is the class that provides access
to WSA4000 and WSA5000 devices.
Its methods closely match the SCPI Command Set described in the
Programmers Reference available in
ThinkRF Resources [http://www.thinkrf.com/resources].

There are simple examples that use this API under the “examples” directory
included with the source code.

This API may be used in a blocking mode (the default) or in an asynchronous
mode with using the `Twisted`_ python library.

In blocking mode all methods that read from the device will wait
to receive a response before returning.

In asynchronous mode all methods will send their commands to the device and
then immediately return a Twisted Deferred object. If you need to wait for
the response or completion of this command you can attach a callback to the
Deferred object and the Twisted reactor will call it when ready. You may
choose to use Twisted’s inlineCallbacks function decorator to write Twisted
code that resembles synchronous code by yielding the Deferred objects
returned from the API.

To use the asynchronous when a WSA instance is created
you must pass a pyrf.connectors.twisted_async.TwistedConnector
instance as the connector parameter, as in show_i_q.py / twisted_show_i_q.py

PyRF RTSA

[image: rtsa-gui screen shot]
[image: rtsa-gui screen shot]
rtsa-gui is a cross-platform GUI application built with the
Qt [http://qt.digia.com/] toolkit and PySideProject [http://qt-project.org/wiki/PySide] bindings for Python.

The GUI may be launched with the command:

rtsa-gui <hostname> [--reset]

If hostname is not specified a dialog will appear asking you to enter one.
If --reset is used the WSA will be reset to defaults before the GUI
appears.

 Copyright 2012-2014, ThinkRF Corporation.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	PyRF documentation

Reference

pyrf.devices

.thinkrf

	
class pyrf.devices.thinkrf.WSA(connector=None)

	Interface for WSA4000 and WSA5000

	Parameters:	connector – Connector object to use for SCPI/VRT connections,
defaults to a new
PlainSocketConnector
instance

connect() must be called
before other methods are used.

Note

The following methods will either block then return a result
or if you passed a
TwistedConnector
instance to the constructor they will immediately return a
Twisted Deferred object.

	
abort()

	This command will cause the WSA to stop the data capturing,
whether in the manual trace block capture, triggering or sweeping
mode. The WSA will be put into the manual mode; in other
words, process such as streaming, trigger and sweep will be
stopped. The capturing process does not wait until the end of a
packet to stop, it will stop immediately upon receiving the command.

	
antenna(number=None)

	This command selects and queries the active antenna port.

	Parameters:	number – 1 or 2 to set; None to query

	Returns:	active antenna port

	
apply_device_settings(settings)

	This command takes a dict of device settings, and applies them to the
WSA
Note this method only applies a setting if it has been changed using this method
:param settings: dict containing settings such as attenuation,decimation,etc

	
attenuator(enable=None)

	This command enables, disables or queries the WSA’s RFE 20
dB attenuation.

	Parameters:	enable – True or False to set; None to query

	Returns:	the current attenuator state

	
capture(spp, ppb)

	This command will start the single block capture and the return of
ppb packets of spp samples each. The data
within a single block capture trace is continuous from one packet
to the other, but not necessary between successive block capture
commands issued.

	Parameters:	
	spp – the number of samples in a packet

	ppb – the number of packets in a capture

	
connect(host)

	connect to a wsa

	Parameters:	host – the hostname or IP to connect to

	
decimation(value=None)

	This command sets or queries the rate of decimation of samples in
a trace capture. This decimation method consists of cascaded
integrator-comb (CIC) filters and at every
value number of samples, one sample is captured. The supported
rate is 4 - 1023. When the rate is set to 1, no decimation is
performed on the trace capture.

	Parameters:	value (int) – new decimation value (1 or 4 - 1023); None to query

	Returns:	the decimation value

	
disconnect()

	close a connection to a wsa

	
eof()

	Check if the VRT stream has closed.

	Returns:	True if no more data, False if more data

	
errors()

	Flush and return the list of errors from past commands
sent to the WSA. An empty list is returned when no errors
are present.

	
flush()

	This command clears the WSA’s internal data storage buffer of
any data that is waiting to be sent. Thus, It is recommended that
the flush command should be used when switching between different
capture modes to clear up the remnants of packet.

	
flush_captures()

	Flush capture memory of sweep captures.

	
freq(freq=None)

	This command sets or queries the tuned center frequency of the WSA.

	Parameters:	freq (int) – the new center frequency in Hz (0 - 10 GHz); None to query

	Returns:	the frequency in Hz

	
fshift(shift=None)

	This command sets or queries the frequency shift value.

	Parameters:	freq (int) – the new frequency shift in Hz (0 - 125 MHz); None to query

	Returns:	the amount of frequency shift

	
gain(gain=None)

	This command sets or queries RFE quantized gain configuration.
The RF front end (RFE) of the WSA consists of multiple quantized
gain stages. The gain corresponding to each user-selectable setting
has been pre-calculated for either optimal sensitivity or linearity.
The parameter defines the total quantized gain of the RFE.

	Parameters:	gain – ‘high’, ‘medium’, ‘low’ or ‘vlow’ to set; None to query

	Returns:	the RF gain value

	
has_data()

	Check if there is VRT data to read.

	Returns:	True if there is a packet to read, False if not

	
have_read_perm()

	Check if we have permission to read data.

	Returns:	True if allowed to read, False if not

	
id()

	Returns the WSA’s identification information string.

	Returns:	“<Manufacturer>,<Model>,<Serial number>,<Firmware version>”

	
ifgain(gain=None)

	This command sets or queries variable IF gain stages of the RFE.
The gain has a range of -10 to 34 dB. This stage of the gain is
additive with the primary gain stages of the LNA
that are described in gain().

	Parameters:	gain – float between -10 and 34 to set; None to query

	Returns:	the ifgain in dB

	
locked(modulestr)

	This command queries the lock status of the RF VCO (Voltage Control
Oscillator) in the Radio Front End (RFE) or the lock status of the
PLL reference clock in the digital card.

	Parameters:	modulestr – ‘vco’ for rf lock status, ‘clkref’ for mobo lock status

	Returns:	True if locked

	
ppb(packets=None)

	This command sets the number of IQ packets in a capture
block

	Parameters:	packets – the number of samples in a packet

	Returns:	the current ppb value if the packets parameter is None

	
preselect_filter(enable=None)

	This command sets or queries the RFE preselect filter selection.

	Parameters:	enable – True or False to set; None to query

	Returns:	the RFE preselect filter selection state

	
raw_read(num)

	Raw read of VRT socket data from the WSA.

	Parameters:	num – the number of bytes to read

	Returns:	bytes

	
read()

	Read a single VRT packet from the WSA.

	
request_read_perm()

	Acquire exclusive permission to read data from the WSA.

	Returns:	True if allowed to read, False if not

	
reset()

	Resets the WSA to its default settings. It does not affect
the registers or queues associated with the IEEE mandated commands.

	
scpiget(cmd)

	Send a SCPI command and wait for the response.

This is the lowest-level interface provided.
Please see the Programmer’s Guide for information about
the commands available.

	Parameters:	cmd (str) – the command to send

	Returns:	the response back from the box if any

	
scpiset(cmd)

	Send a SCPI command.

This is the lowest-level interface provided.
Please see the Programmer’s Guide for information about
the commands available.

	Parameters:	cmd (str) – the command to send

	
spp(samples=None)

	This command sets or queries the number of Samples Per Packet
(SPPacket).

The upper bound of the samples is limited by the VRT’s 16-bit
packet size field less the VRT header and any optional fields
(i.e. Stream ID, Class ID, Timestamps, and trailer) of 32-bit
wide words. However since the SPP must be a multiple of 16,
the maximum is thus limited by 2**16 - 16.

	Parameters:	samples – the number of samples in a packet or None

	Returns:	the current spp value if the samples parameter is None

	
stream_start(stream_id=None)

	This command begins the execution of the stream capture.
It will also initiate data capturing. Data packets will
be streamed (or pushed) from the WSA whenever data
is available.

	Parameters:	stream_id – optional unsigned 32-bit stream identifier

	
stream_status()

	This query returns the current running status of the
stream capture mode.

	Returns:	‘RUNNING’ or ‘STOPPED’

	
stream_stop()

	This command stops the stream capture. After receiving
the command, the WSA system will stop when the current
capturing VRT packet is completed.

	
sweep_add(entry)

	Add an entry to the sweep list

	Parameters:	entry (pyrf.config.SweepEntry) – the sweep entry to add

	
sweep_clear()

	Remove all entries from the sweep list.

	
sweep_read(index)

	Read an entry from the sweep list.

	Parameters:	index – the index of the entry to read

	Returns:	sweep entry

	Return type:	pyrf.config.SweepEntry

	
sweep_start(start_id=None)

	Start the sweep engine.

	
sweep_stop()

	Stop the sweep engine.

	
trigger(settings=None)

	This command sets or queries the type of trigger event.
Setting the trigger type to “NONE” is equivalent to disabling
the trigger execution; setting to any other type will
enable the trigger engine.

	Parameters:	settings (dictionary) – the new trigger settings; None to query

	Returns:	the trigger settings

	
pyrf.devices.thinkrf.parse_discovery_response(response)

	This function parses the WSA’s raw discovery response

	Parameters:	response – The WSA’s raw response to a discovery query

	Returns:	Return (model, serial, firmware version) based on a discovery

response message

pyrf.sweep_device

	
class pyrf.sweep_device.SweepDevice(real_device, async_callback=None)

	Virtual device that generates power levels from a range of
frequencies by sweeping the frequencies with a real device
and piecing together FFT results.

	Parameters:	
	real_device – device that will will be used for capturing data,
typically a pyrf.devices.thinkrf.WSA instance.

	callback – callback to use for async operation (not used if
real_device is using a PlainSocketConnector)

	
capture_power_spectrum(fstart, fstop, rbw, device_settings=None, mode='ZIF', continuous=False, min_points=32)

	Initiate a capture of power spectral density by
setting up a sweep list and starting a single sweep.

	Parameters:	
	fstart (float) – starting frequency in Hz

	fstop (float) – ending frequency in Hz

	rbw (float) – requested RBW in Hz (output RBW may be smaller than
requested)

	device_settings – antenna, gain and other device settings

	mode (string) – sweep mode, ‘ZIF left band’, ‘ZIF’ or ‘SH’

	continuous (bool) – async continue after first sweep

	min_points (int) – smallest number of points per capture from real_device

	
exception pyrf.sweep_device.SweepDeviceError

	

	
class pyrf.sweep_device.SweepStep

	Data structure used by SweepDevice for planning sweeps

	Parameters:	
	fcenter – starting center frequency in Hz

	fstep – frequency increment each step in Hz

	fshift – frequency shift in Hz

	decimation – decimation value

	points – samples to capture

	bins_skip – number of FFT bins to skip from left

	bins_run – number of usable FFT bins each step

	bins_pass – number of bins from first step to discard from left

	bins_keep – total number of bins to keep from all steps

	
steps

	

	
to_sweep_entry(device, rfe_mode, **kwargs)

	Create a SweepEntry for device matching this SweepStep,

extra parameters (gain, antenna etc.) may be provided as keyword
parameters

	
pyrf.sweep_device.plan_sweep(device, fstart, fstop, rbw, mode, min_points=32)

	

	Parameters:	
	device – a device class or instance such as
pyrf.devices.thinkrf.WSA

	fstart (float) – starting frequency in Hz

	fstop (float) – ending frequency in Hz

	rbw (float) – requested RBW in Hz (output RBW may be smaller than requested)

	mode (string) – sweep mode, ‘ZIF left band’, ‘ZIF’ or ‘SH’

	min_points (int) – smallest number of points per capture

The following device properties are used in planning the sweep:

	device.properties.FULL_BW

	full width of the filter in Hz

	device.properties.USABLE_BW

	usable portion before filter drop-off at edges in Hz

	device.properties.MIN_TUNABLE

	the lowest valid center frequency for arbitrary tuning in Hz,
0(DC) is always assumed to be available for direct digitization

	device.properties.MAX_TUNABLE

	the highest valid center frequency for arbitrart tuning in Hz

	device.properties.DC_OFFSET_BW

	the range of frequencies around center that may be affected by
a DC offset and should not be used

	device.properties.TUNING_RESOLUTION

	the smallest tuning increment for fcenter and fstep

	Returns:	(actual fstart, actual fstop, list of SweepStep instances)

The caller would then use each of these tuples to do the following:

	The first 5 values are used for a single capture or single sweep

	An FFT is run on the points returned to produce bins in the linear
domain

	bins[bins_skip:bins_skip + bins_run] are selected

	take logarithm of output bins and appended to the result

	for sweeps repeat from 2 until the sweep is complete

	bins_pass is the number of selected bins to skip from the first
capture only

	bins_keep is the total number of selected bins to keep; for
single captures bins_run == bins_keep

pyrf.capture_device

	
class pyrf.capture_device.CaptureDevice(real_device, async_callback=None, device_settings=None)

	Virtual device that returns power levels generated from a single data packet

	Parameters:	
	real_device – device that will will be used for capturing data,
typically a pyrf.thinkrf.WSA instance.

	async_callback – callback to use for async operation (not used if
real_device is using a PlainSocketConnector)

	device_settings – initial device settings to use, passed to
pyrf.capture_dvice.CaptureDevice.configure_device()
if given

	
capture_time_domain(rfe_mode, freq, rbw, device_settings=None, min_points=128, force_change=False)

	Initiate a capture of raw time domain IQ or I-only data

	Parameters:	
	rfe_mode – radio front end mode, e.g. ‘ZIF’, ‘SH’, ...

	freq – center frequency

	rbw (float) – requested RBW in Hz (output RBW may be smaller than
requested)

	device_settings – attenuator, decimation frequency shift
and other device settings

	min_points (int) – smallest number of points per capture from real_device

	
configure_device(device_settings, force_change=False)

	Configure the device settings on the next capture

	Parameters:	device_settings – attenuator, decimation frequency shift
and other device settings

	
read_data(packet)

	

	
exception pyrf.capture_device.CaptureDeviceError

	

pyrf.connectors

.blocking

	
class pyrf.connectors.blocking.PlainSocketConnector

	This connector makes SCPI/VRT socket connections using plain sockets.

	
connect(host)

	

	
disconnect()

	

	
eof()

	

	
has_data()

	

	
raw_read(num)

	

	
scpiget(cmd)

	

	
scpiset(cmd)

	

	
sync_async(gen)

	Handler for the @sync_async decorator. We convert the
generator to a single return value for simple synchronous use.

	
pyrf.connectors.blocking.socketread(socket, count, flags=None)

	Retry socket read until count data received,
like reading from a file.

.twisted_async

	
class pyrf.connectors.twisted_async.SCPIClient

	
	
connectionMade()

	

	
dataReceived(data)

	

	
scpiget(cmd)

	

	
scpiset(cmd)

	

	
class pyrf.connectors.twisted_async.SCPIClientFactory

	
	
buildProtocol(addr)

	

	
clientConnectionFailed(connector, reason)

	

	
clientConnectionLost(connector, reason)

	

	
startedConnecting(connector)

	

	
class pyrf.connectors.twisted_async.TwistedConnector(reactor, vrt_callback=None)

	A connector that makes SCPI/VRT connections asynchronously using
Twisted.

A callback may be assigned to vrt_callback that will be called
with VRT packets as they arrive. When .vrt_callback is None
(the default) arriving packets will be ignored.

	
connect(host, output_file=None)

	

	
disconnect()

	

	
eof()

	

	
inject_recording_state(state)

	

	
raw_read(num_bytes)

	

	
scpiget(cmd)

	

	
scpiset(cmd)

	

	
set_recording_output(output_file=None)

	

	
sync_async(gen)

	

	
exception pyrf.connectors.twisted_async.TwistedConnectorError

	

	
class pyrf.connectors.twisted_async.VRTClient(receive_callback)

	A Twisted protocol for the VRT connection

	Parameters:	receive_callback – a function that will be passed a vrt
DataPacket or ContextPacket when it is received

	
connectionLost(reason)

	

	
dataReceived(data)

	

	
eof = False

	

	
inject_recording_state(state)

	

	
makeConnection(transport)

	

	
set_recording_output(output_file=None)

	

	
class pyrf.connectors.twisted_async.VRTClientFactory(receive_callback)

	
	
buildProtocol(addr)

	

	
clientConnectionFailed(connector, reason)

	

	
clientConnectionLost(connector, reason)

	

	
startedConnecting(connector)

	

pyrf.config

	
class pyrf.config.SweepEntry(fstart=2400000000, fstop=2400000000, fstep=100000000, fshift=0, decimation=0, antenna=1, gain='vlow', ifgain=0, hdr_gain=-10, spp=1024, ppb=1, trigtype='none', dwell_s=0, dwell_us=0, level_fstart=50000000, level_fstop=10000000000, level_amplitude=-100, attenuator=True, rfe_mode='ZIF')

	Sweep entry for pyrf.devices.thinkrf.WSA.sweep_add()

	Parameters:	
	fstart – starting frequency in Hz

	fstop – ending frequency in Hz

	fstep – frequency step in Hz

	fshift – the frequency shift in Hz

	decimation – the decimation value (0 or 4 - 1023)

	antenna – the antenna (1 or 2)

	gain – the RF gain value (‘high’, ‘medium’, ‘low’ or ‘vlow’)

	ifgain – the IF gain in dB (-10 - 34)

	hdr_gain – the HDR gain in dB (-10 - 30)

	spp – samples per packet

	ppb – packets per block

	dwell_s – dwell time seconds

	dwell_us – dwell time microseconds

	trigtype – trigger type (‘none’, ‘pulse’ or ‘level’)

	level_fstart – level trigger starting frequency in Hz

	level_fstop – level trigger ending frequency in Hz

	level_amplitude – level trigger minimum in dBm

	attenuator – enable/disable attenuator

	rfe_mode – RFE mode to be used

	
class pyrf.config.TriggerSettings(trigtype='NONE', fstart=None, fstop=None, amplitude=None)

	Trigger settings for pyrf.devices.thinkrf.WSA.trigger().

	Parameters:	
	trigtype – “LEVEL” or “NONE” to disable

	fstart – starting frequency in Hz

	fstop – ending frequency in Hz

	amplitude – minumum level for trigger in dBm

	
exception pyrf.config.TriggerSettingsError

	

pyrf.numpy_util

	
pyrf.numpy_util.calculate_channel_power(power_spectrum)

	Return a dBm value representing the channel power of the input
power spectrum.
:param power_spectrum: array containing power spectrum to be used for

the channel power calculation

	
pyrf.numpy_util.compute_fft(dut, data_pkt, context, correct_phase=True, hide_differential_dc_offset=True, convert_to_dbm=True, apply_window=True, apply_spec_inv=True, apply_reference=True, ref=None)

	Return an array of dBm values by computing the FFT of
the passed data and reference level.

	Parameters:	
	dut (pyrf.devices.thinkrf.WSA) – WSA device

	data_pkt (pyrf.vrt.DataPacket) – packet containing samples

	context – dict containing context values

	correct_phase – apply phase correction for captures with IQ data

	hide_differential_dc_offset – mask the differential DC offset
present in captures with IQ data

	convert_to_dbm – convert the output values to dBm

	Returns:	numpy array of dBm values as floats

pyrf.util

	
pyrf.util.read_data_and_context(dut, points=1024)

	Initiate capture of one data packet, wait for and return data packet
and collect preceeding context packets.

	Returns:	(data_pkt, context_values)

Where context_values is a dict of {field_name: value} items from
all the context packets received.

	
pyrf.util.collect_data_and_context(dut)

	Wait for and return data packet and collect preceeding context packets.

pyrf.vrt

	
class pyrf.vrt.ContextPacket(packet_type, count, size, tmpstr, has_timestamp)

	A Context Packet received from pyrf.devices.thinkrf.WSA.read()

	
fields

	a dict containing field names and values from the packet

	
is_context_packet(ptype=None)

	

	Parameters:	ptype – “Receiver”, “Digitizer” or None for any

packet type

	Returns:	True if this packet matches the type passed

	
is_data_packet()

	

	Returns:	False

	
class pyrf.vrt.DataArray(binary_data, bytes_per_sample)

	Data Packet values as a lazy array read from binary_data.

	Parameters:	bytes_per_sample – 1 for PSD8 data, 2 for I14 data or
4 for I24 data

	
numpy_array()

	return a numpy array for this data

	
class pyrf.vrt.DataPacket(count, size, stream_id, tsi, tsf, payload, trailer)

	A Data Packet received from pyrf.devices.thinkrf.WSA.read()

	
data

	a pyrf.vrt.IQData object containing the packet data

	
is_context_packet(ptype=None)

	

	Returns:	False

	
is_data_packet()

	

	Returns:	True

	
class pyrf.vrt.IQData(binary_data)

	Data Packet values as a lazy collection of (I, Q) tuples
read from binary_data.

This object behaves as an immutable python sequence, e.g.
you may do any of the following:

points = len(iq_data)

i_and_q = iq_data[5]

for i, q in iq_data:
 print i, q

	
numpy_array()

	Return a numpy array of I, Q values for this data similar to:

	
exception pyrf.vrt.InvalidDataReceived

	

	
pyrf.vrt.generate_speca_packet(data, count=0)

	

	Parameters:	
	data – a python dict that can be serialized as JSON

	count – int count for the header of this packet

	Returns:	(vrt packet bytes, next count int)

	
pyrf.vrt.vrt_packet_reader(raw_read)

	Read a VRT packet, parse it and return an object with its data.

Implemented as a generator that yields the result of the passed
raw_read function and accepts the value sent as its data.

 Copyright 2012-2014, ThinkRF Corporation.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	PyRF documentation

Examples

These examples may be found in the “examples” directory included
with the PyRF source code.

discovery.py / twisted_discovery.py

	discovery.py [https://github.com/pyrf/pyrf/blob/master/examples/discovery.py]

	twisted_discovery.py [https://github.com/pyrf/pyrf/blob/master/examples/twisted_discovery.py]

These examples detect WSA devices on the same network

Example output:

WSA4000 00:50:c2:ea:29:14 None at 10.126.110.111
WSA4000 00:50:c2:ea:29:26 None at 10.126.110.113

show_i_q.py / twisted_show_i_q.py

These examples connect to a device specified on the command line,
tunes it to a center frequency of 2.450 MHz
then reads and displays one capture of 1024 i, q values.

	show_i_q.py [https://github.com/pyrf/pyrf/blob/master/examples/show_i_q.py]

	twisted_show_i_q.py [https://github.com/pyrf/pyrf/blob/master/examples/twisted_show_i_q.py]

Example output (truncated):

0,-20
-8,-16
0,-24
-8,-12
0,-32
24,-24
32,-16
-12,-24
-20,0
12,-32
32,-4
0,12
-20,-16
-48,16
-12,12
0,-36
4,-12

matplotlib_plot_sweep.py

This example connects to a device specified on the command line,
and plots a complete sweep of the spectrum using NumPy [http://numpy.scipy.org/] and matplotlib [http://matplotlib.org/].

	matplotlib_plot_sweep.py [https://github.com/pyrf/pyrf/blob/master/examples/matplotlib_plot_sweep.py]

pyqtgraph_plot_block.py

This example connects to a device specified on the command line,
tunes it to a center frequency of 2.450 MHz then continually captures
and displays an FFT in a GUI window.

	pyqtgraph_plot_block.py [https://github.com/pyrf/pyrf/blob/master/examples/pyqtgraph_plot_block.py]

 Copyright 2012-2014, ThinkRF Corporation.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	PyRF documentation

Changelog

PyRF 2.7.2

2014-12-16

	Added capture control widget

	Changed default save file names to represent date and time of capture

	Fixed baseband mode frequency axis issue

	Netifaces library is no longer a hard requirement

	Improved overall marker controls

	Added ‘Enable mouse tune’ option to frequency widget

	Default HDR gain is now 25

PyRF 2.7.1

2014-11-13

	Discovery widget now queries for new WSA’s on the network every 10 seconds

	Fixed issue where switching from sweep to non-sweep wrongly changed center

frequency

	Fixed issue where Minimum control not behaving as designed

	Fixed issue where trigger controls were not disabled for non-trigger modes

	Fixed frequency axis texts

	Y-axis in the persistence plot now corresponds with spectral plot’s y-axis

PyRF 2.7.0

2014-11-04

	All control widgets are now dockable

	Enabled mouse control of spectral plot’s y-axis

	Added lower RBW values in non-sweep modes

PyRF 2.6.2

2014-10-10

	HDR gain control in GUI now allows values up to +20 dB

	Sweep ZIF (100 MHz steps) now only shown in GUI when developer menu is
enabled

	GUI PLL Reference control now works in Sweep mode

	Darkened trace color in GUI for attenuated edges and dc offset now matches
trace color

	Alternate sweep step color in GUI now matches trace color

	DC offset region now limited to middle three bins in GUI (was expanding
when decimation was applied)

	Correction to usable region in ZIF and SH modes with decimation applied

	Fixed HDR center offset value

	Added device information dialog to GUI

PyRF 2.6.1

2014-09-30

	Upload corrected version with changelog

PyRF 2.6.0

2014-09-30

	Added channel power measurement feature to GUI

	Added Export to CSV feature to GUI for saving streams of processed
power spectrum data

	Added a power level cursor (adjustable horizontal line) to GUI

	Added reference level offset adjustment box to GUI

	Trigger region in GUI is now a rectangle to make it visibly different
than channel power measurement controls

	Update mode drop-down in GUI to include information about each mode
instead of showing internal mode names

	Use netifaces for address detection to fix discover issue on
non-English windows machines

PyRF 2.5.0

2014-09-09

	Added Persistence plot

	Made markers draggable in the plot

	Added version number to title bar

	Moved DSP options to developer menu, developer menu now hidden
unless GUI run with -d option

	Rounded center to nearest tuning resolution step in GUI

	Fixed a number of GUI control and label issues

	Moved changelog into docs and updated

PyRF 2.4.1

2014-08-19

	Added missing reqirement

	Fixed use with CONNECTOR IQ path

PyRF 2.4.0

2014-08-19

	Improved trigger controls

	Fixed modes available with some WSA versions

PyRF 2.3.0

2014-08-12

	Added full playback support (including sweep) in GUI

	Added hdr_gain control to WSA class

	Added average mode and clear button for traces

	Added handling for different REFLEVEL_ERROR on early firmware versions

	Disable triggers for unsupported WSA firmware versions

	Added free plot adjustment developer option

	Fixed a number of GUI interface issues

PyRF 2.2.0

2014-07-15

	Added waterfall display for GUI and example program

	Added automatic re-tuning when plot dragged of zoomed

	Added recording speca state in recorded VRT files, Start/Stop recording
menu

	Added GUI non-sweep playback support and command line ‘-p’ option

	Added marker controls: peak left, right, center to marker

	Redesigned frequency controls, device controls and trace controls

	Default to Sweep SH mode in GUI

	Added developer options menu for attenuated edges etc.

	Refactored shared GUI code and panels

	SweepDevice now returns numpy arrays of dBm values

	Fixed device discovery with multiple interfaces

	Replaced reflevel adjustment properties with REFLEVEL_ERROR value

	Renamed GUI launcher to rtsa-gui

PyRF 2.1.0

2014-06-20

	Refactored GUI code to separate out device control and state

	Added SPECA defaults to device properties

	Restored trigger controls in GUI

	Added DSP panel to control fft calculations in GUI

	Fixed a number of GUI plot issues

PyRF 2.0.3

2014-06-03

	Added simple QT GUI example with frequency, attenuation and rbw controls

	Added support for more hardware versions

	Fixed plotting issues in a number of modes in GUI

PyRF 2.0.2

2014-04-29

	Removed Sweep ZIF mode from GUI

	Fixed RFE input mode GUI issues

PyRF 2.0.1

2014-04-21

	Added Sweep SH mode support to SweepDevice

	Added IQ in, DD, SHN RFE modes to GUI

	Added IQ output path and PLL reference controls to GUI

	Added discovery widget to GUI for finding devices

	Fixed a number of issues

PyRF 2.0.0

2014-01-31

	Added multiple traces and trace controls to GUI

	Added constellation and IQ plots

	Added raw VRT capture-to-file support

	Updated SweepDevice sweep plan calculation

	Created separate GUI for single capture modes

	Updated device properties for WSA5000 RFE modes

	Show attenuated edges in gray, sweep steps in different colors in GUI

	Added decimation and frequency shift controls to single capture GUI

	Fixed many issues with WSA5000 different RFE mode support

	Removed trigger controls, waiting for hardware support

	Switched to using pyinstaller for better windows build support

PyRF 1.2.0

2013-10-01

	Added WSA5000 support

	Added WSA discovery example scripts

	Renamed WSA4000 class to WSA (supports WSA5000 as well)

	Separated device properties from WSA class

PyRF 1.1.0

2013-07-19

	Fixed some py2exe issues

	Show the GUI even when not connected

PyRF 1.0.0

2013-07-18

	Switched to pyqtgraph for spectrum plot

	Added trigger controls

	Added markers

	Added hotkeys for control

	Added bandwidth control

	Renamed GUI launcher speca-gui

	Created SweepDevice to generalize spectrum analyzer-type function

	Created CaptureDevice to collect single captures and related context

PyRF 0.4.0

2013-05-18

	pyrf.connectors.twisted_async.TwistedConnector now has a
vrt_callback attribute for setting a function to call when
VRT packets are received.

This new callback takes a single parameter: a pyrf.vrt.DataPacket
or pyrf.vrt.ContextPacket instance.

The old method of emulating a synchronous read() interface
from a pyrf.devices.thinkrf.WSA4000 instance is no longer
supported, and will now raise a
pyrf.connectors.twisted_async.TwistedConnectorError exception.

	New methods added to pyrf.devices.thinkrf.WSA4000: abort(),
spp(), ppb(), stream_start(), stream_stop(), stream_status()

	Added support for stream ID context packets and provide a value
for sweep ID context packet not converted to a hex string

	wsa4000gui updated to use vrt callback

	“wsa4000gui -v” enables verbose mode which currently shows SCPI
commands sent and responses received on stdout

	Added examples/stream.py example for testing stream data rate

	Updated examples/twisted_show_i_q.py for new vrt_callback

	Removed pyrf.twisted_util module which implemented old
synchronous read() interface

	Removed now unused pyrf.connectors.twisted_async.VRTTooMuchData
exception

	Removed wsa4000gui-blocking script

	Fix for power spectrum calculation in pyrf.numpy_util

PyRF 0.3.0

2013-02-01

	API now allows asynchronous use with TwistedConnector

	GUI now uses asynchronous mode, but synchronous version may still
be built as wsa4000gui-blocking

	GUI moved from examples to inside the package at pyrf.gui and built
from the same setup.py

	add Twisted version of show_i_q.py example

	documentation: installation instructions, requirements, py2exe
instructions, user manual and many other changes

	fix support for reading WSA4000 very low frequency range

	pyrf.util.read_data_and_reflevel() was renamed to
read_data_and_context()

	pyrf.util.socketread() was moved to
pyrf.connectors.blocking.socketread()

	added requirements.txt for building dependencies from source

PyRF 0.2.5

2013-01-26

	fix for compute_fft calculations

PyRF 0.2.4

2013-01-19

	fix for missing devices file in setup.py

PyRF 0.2.3

2013-01-19

	add planned features to docs

PyRF 0.2.2

2013-01-17

	rename package from python-thinkrf to PyRF

python-thinkrf 0.2.1

2012-12-21

	update for WSA4000 firmware 2.5.3 decimation change

python-thinkrf 0.2.0

2012-12-09

	GUI: add BPF toggle, Antenna switching, –reset option, “Open Device”
dialog, IF Gain control, Span control, RBW control, update freq on
finished editing

	create basic documentation and reference and improve docstrings

	bug fixes for GUI, py2exe setup.py

	GUI perfomance improvements

python-thinkrf 0.1.0

2012-12-01

	initial release

 Copyright 2012-2014, ThinkRF Corporation.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	PyRF documentation

 Python Module Index

 p

 			

 		
 p	

 	[image: -]
 	
 pyrf	

 	
 	
 pyrf.capture_device	

 	
 	
 pyrf.config	

 	
 	
 pyrf.connectors.blocking	

 	
 	
 pyrf.connectors.twisted_async	

 	
 	
 pyrf.devices.thinkrf	

 	
 	
 pyrf.numpy_util	

 	
 	
 pyrf.sweep_device	

 	
 	
 pyrf.util	

 	
 	
 pyrf.vrt	

 Copyright 2012-2014, ThinkRF Corporation.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	PyRF documentation

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | V
 | W

A

 	

 	abort() (pyrf.devices.thinkrf.WSA method)

 	antenna() (pyrf.devices.thinkrf.WSA method)

 	

 	apply_device_settings() (pyrf.devices.thinkrf.WSA method)

 	attenuator() (pyrf.devices.thinkrf.WSA method)

B

 	

 	buildProtocol() (pyrf.connectors.twisted_async.SCPIClientFactory method)

 	

 	(pyrf.connectors.twisted_async.VRTClientFactory method)

C

 	

 	calculate_channel_power() (in module pyrf.numpy_util)

 	capture() (pyrf.devices.thinkrf.WSA method)

 	capture_power_spectrum() (pyrf.sweep_device.SweepDevice method)

 	capture_time_domain() (pyrf.capture_device.CaptureDevice method)

 	CaptureDevice (class in pyrf.capture_device)

 	CaptureDeviceError

 	clientConnectionFailed() (pyrf.connectors.twisted_async.SCPIClientFactory method)

 	

 	(pyrf.connectors.twisted_async.VRTClientFactory method)

 	clientConnectionLost() (pyrf.connectors.twisted_async.SCPIClientFactory method)

 	

 	(pyrf.connectors.twisted_async.VRTClientFactory method)

 	

 	collect_data_and_context() (in module pyrf.util)

 	compute_fft() (in module pyrf.numpy_util)

 	configure_device() (pyrf.capture_device.CaptureDevice method)

 	connect() (pyrf.connectors.blocking.PlainSocketConnector method)

 	

 	(pyrf.connectors.twisted_async.TwistedConnector method)

 	(pyrf.devices.thinkrf.WSA method)

 	connectionLost() (pyrf.connectors.twisted_async.VRTClient method)

 	connectionMade() (pyrf.connectors.twisted_async.SCPIClient method)

 	ContextPacket (class in pyrf.vrt)

D

 	

 	data (pyrf.vrt.DataPacket attribute)

 	DataArray (class in pyrf.vrt)

 	DataPacket (class in pyrf.vrt)

 	

 	dataReceived() (pyrf.connectors.twisted_async.SCPIClient method)

 	

 	(pyrf.connectors.twisted_async.VRTClient method)

 	decimation() (pyrf.devices.thinkrf.WSA method)

 	disconnect() (pyrf.connectors.blocking.PlainSocketConnector method)

 	

 	(pyrf.connectors.twisted_async.TwistedConnector method)

 	(pyrf.devices.thinkrf.WSA method)

E

 	

 	eof (pyrf.connectors.twisted_async.VRTClient attribute)

 	eof() (pyrf.connectors.blocking.PlainSocketConnector method)

 	

 	(pyrf.connectors.twisted_async.TwistedConnector method)

 	(pyrf.devices.thinkrf.WSA method)

 	

 	errors() (pyrf.devices.thinkrf.WSA method)

F

 	

 	fields (pyrf.vrt.ContextPacket attribute)

 	flush() (pyrf.devices.thinkrf.WSA method)

 	flush_captures() (pyrf.devices.thinkrf.WSA method)

 	

 	freq() (pyrf.devices.thinkrf.WSA method)

 	fshift() (pyrf.devices.thinkrf.WSA method)

G

 	

 	gain() (pyrf.devices.thinkrf.WSA method)

 	

 	generate_speca_packet() (in module pyrf.vrt)

H

 	

 	has_data() (pyrf.connectors.blocking.PlainSocketConnector method)

 	

 	(pyrf.devices.thinkrf.WSA method)

 	

 	have_read_perm() (pyrf.devices.thinkrf.WSA method)

I

 	

 	id() (pyrf.devices.thinkrf.WSA method)

 	ifgain() (pyrf.devices.thinkrf.WSA method)

 	inject_recording_state() (pyrf.connectors.twisted_async.TwistedConnector method)

 	

 	(pyrf.connectors.twisted_async.VRTClient method)

 	InvalidDataReceived

 	

 	IQData (class in pyrf.vrt)

 	is_context_packet() (pyrf.vrt.ContextPacket method)

 	

 	(pyrf.vrt.DataPacket method)

 	is_data_packet() (pyrf.vrt.ContextPacket method)

 	

 	(pyrf.vrt.DataPacket method)

L

 	

 	locked() (pyrf.devices.thinkrf.WSA method)

M

 	

 	makeConnection() (pyrf.connectors.twisted_async.VRTClient method)

N

 	

 	numpy_array() (pyrf.vrt.DataArray method)

 	

 	(pyrf.vrt.IQData method)

P

 	

 	parse_discovery_response() (in module pyrf.devices.thinkrf)

 	PlainSocketConnector (class in pyrf.connectors.blocking)

 	plan_sweep() (in module pyrf.sweep_device)

 	ppb() (pyrf.devices.thinkrf.WSA method)

 	preselect_filter() (pyrf.devices.thinkrf.WSA method)

 	pyrf.capture_device (module)

 	pyrf.config (module)

 	

 	pyrf.connectors.blocking (module)

 	pyrf.connectors.twisted_async (module)

 	pyrf.devices.thinkrf (module)

 	pyrf.numpy_util (module)

 	pyrf.sweep_device (module)

 	pyrf.util (module)

 	pyrf.vrt (module)

R

 	

 	raw_read() (pyrf.connectors.blocking.PlainSocketConnector method)

 	

 	(pyrf.connectors.twisted_async.TwistedConnector method)

 	(pyrf.devices.thinkrf.WSA method)

 	read() (pyrf.devices.thinkrf.WSA method)

 	read_data() (pyrf.capture_device.CaptureDevice method)

 	

 	read_data_and_context() (in module pyrf.util)

 	request_read_perm() (pyrf.devices.thinkrf.WSA method)

 	reset() (pyrf.devices.thinkrf.WSA method)

S

 	

 	SCPIClient (class in pyrf.connectors.twisted_async)

 	SCPIClientFactory (class in pyrf.connectors.twisted_async)

 	scpiget() (pyrf.connectors.blocking.PlainSocketConnector method)

 	

 	(pyrf.connectors.twisted_async.SCPIClient method)

 	(pyrf.connectors.twisted_async.TwistedConnector method)

 	(pyrf.devices.thinkrf.WSA method)

 	scpiset() (pyrf.connectors.blocking.PlainSocketConnector method)

 	

 	(pyrf.connectors.twisted_async.SCPIClient method)

 	(pyrf.connectors.twisted_async.TwistedConnector method)

 	(pyrf.devices.thinkrf.WSA method)

 	set_recording_output() (pyrf.connectors.twisted_async.TwistedConnector method)

 	

 	(pyrf.connectors.twisted_async.VRTClient method)

 	socketread() (in module pyrf.connectors.blocking)

 	spp() (pyrf.devices.thinkrf.WSA method)

 	startedConnecting() (pyrf.connectors.twisted_async.SCPIClientFactory method)

 	

 	(pyrf.connectors.twisted_async.VRTClientFactory method)

 	steps (pyrf.sweep_device.SweepStep attribute)

 	stream_start() (pyrf.devices.thinkrf.WSA method)

 	stream_status() (pyrf.devices.thinkrf.WSA method)

 	

 	stream_stop() (pyrf.devices.thinkrf.WSA method)

 	sweep_add() (pyrf.devices.thinkrf.WSA method)

 	sweep_clear() (pyrf.devices.thinkrf.WSA method)

 	sweep_read() (pyrf.devices.thinkrf.WSA method)

 	sweep_start() (pyrf.devices.thinkrf.WSA method)

 	sweep_stop() (pyrf.devices.thinkrf.WSA method)

 	SweepDevice (class in pyrf.sweep_device)

 	SweepDeviceError

 	SweepEntry (class in pyrf.config)

 	SweepStep (class in pyrf.sweep_device)

 	sync_async() (pyrf.connectors.blocking.PlainSocketConnector method)

 	

 	(pyrf.connectors.twisted_async.TwistedConnector method)

T

 	

 	to_sweep_entry() (pyrf.sweep_device.SweepStep method)

 	trigger() (pyrf.devices.thinkrf.WSA method)

 	TriggerSettings (class in pyrf.config)

 	

 	TriggerSettingsError

 	TwistedConnector (class in pyrf.connectors.twisted_async)

 	TwistedConnectorError

V

 	

 	vrt_packet_reader() (in module pyrf.vrt)

 	VRTClient (class in pyrf.connectors.twisted_async)

 	

 	VRTClientFactory (class in pyrf.connectors.twisted_async)

W

 	

 	WSA (class in pyrf.devices.thinkrf)

 Copyright 2012-2014, ThinkRF Corporation.
 Created using Sphinx 1.2.2.

 _static/comment.png

_static/file.png

_static/minus.png

_static/up.png

_static/plus.png

_static/ajax-loader.gif

_static/down.png

_static/comment-close.png

_static/comment-bright.png

_static/up-pressed.png

_images/rtsa-gui.png
M1: 2446.85 MHz M2: 2457.85 MHz Delta: 11.0 MHz Frequency Control
-105.08 dBm -110.56 dBm 5.48dB N LIOME

P T

Amplitude Control
fevel: 0 cém] Miimum:

Attenuator

Device Control

Power (dBm)

2468

Stop = 2.4691.GHz

search.html

 Navigation

 		
 index

 		
 modules |

 		PyRF documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012-2014, ThinkRF Corporation.
 Created using Sphinx 1.2.2.

_images/PyRF-Block-Diagram1.png
Spectrum Analyzer GUI

pyrf.sweep_device.
Sweep Device

pye devicesthinksf.

pyrf.connectorblocking.
Plain Socket
Connector

[0 PRE
SCPI /VRT Open Source Libraries
Network Layer

Development

_static/down-pressed.png

_images/pyrf_logo.png
PYRF

_images/rtsa-gui-2.png
sl *“T"WW‘"W‘n"*”\“f‘?‘“‘W’”W‘\"'l'll'\r*"wwﬂ"l"w‘r’rMMM"M’Nr\“yllw“WHW m ™ "“‘N‘W“‘W'”v"WWW‘mﬂ“‘&rﬂww’W

